Posts

Showing posts with the label Regression

Graphic design python turtle 🐢

from turtle import * import colorsys bgcolor('black') pensize(0) tracer(50) h=0 for i in range(300): c=colorsys.hsv_to_rgb(h,1,1) h+=0.9 color(c) forward(300) left(100) fd(i) goto(0,0) down() rt(90) begin_fill() circle(0) end_fill() rt(10) for j in range(5): rt(30) done() Please follow my blog and subscribe my channel for more videos and newly updates 👍👍👍👍👍 import turtle as t import colorsys t.bgcolor('black') t.tracer(100) h=0.4 def draw(ang,n): t.circle(5+n,60) t.left(ang) t.circle(5+n,60) for i in range(200): c=colorsys.hsv_to_rgb(h,1,1) h+=0.005 t.color(c) t.pensize(2) draw(90,i*2) draw(120,i*2.5) draw()

Regression in Machine Learning

Image
  Regression Regression models are used to predict a continuous value. Predicting prices of a house given the features of house like size, price etc. is one   of the common examples of regression. It is a supervised technique. Types of Regression: -   Simple Linear Regression  Polynomial regression Support Vector Regression   Decision Tree Regression   Random Forest Regression 1.         Simple Linear Regression:-   This   si one of most common and interesting type of regression technique. Here we predict a target variable Y based on the input variable X. A linear relationship should exist between target variable and predictor and so comes the name linear regression. 2.         Polynomial Regression: -   In polynomial regression, we transform the original features into polynomial features of a given degree and then apply linear regression on it. 3.         Support Vector Regression :-   In SVR, we identify a hyper plane with maximum margin such that maximum numbers of data po